
EGR 304 Friday, 2/14/2020

1

H-Bridge (application to DC motor control)

By closing various switches voltage
can be applied to the motor in
either polarity.

1

2

EGR 304 Friday, 2/14/2020

2

By closing various switches voltage
can be applied to the motor in
either polarity.

But switches are not enough. The
motor is an inductive load (has coils
of wire). Thus you MUST
incorporate flyback diodes.

H-Bridge (application to DC motor control)

To run the motor in one direction,
say clockwise, close S1 and S4.

To run the motor in the other
direction, say counterclockwise,
close S2 and S3.

To allow the motor to coast, open all
four switches.

To brake the motor, close S3 and S4
(or alternatively, close S1 and S2).

H-Bridge (application to DC motor control)

3

4

EGR 304 Friday, 2/14/2020

3

To run the motor in one direction,
say clockwise, close S1 and S4.

To run the motor in the other
direction, say counterclockwise,
close S2 and S3.

To allow the motor to coast, open all
four switches.

To brake the motor, close S3 and S4
(or alternatively, close S1 and S2).

H-Bridge (application to DC motor control)

To run the motor in one direction,
say clockwise, close S1 and S4.

To run the motor in the other
direction, say counterclockwise,
close S2 and S3.

To allow the motor to coast, open all
four switches.

To brake the motor, close S3 and S4
(or alternatively, close S1 and S2).

Spins freely
either direction

H-Bridge (application to DC motor control)

5

6

EGR 304 Friday, 2/14/2020

4

To run the motor in one direction,
say clockwise, close S1 and S4.

To run the motor in the other
direction, say counterclockwise,
close S2 and S3.

To allow the motor to coast, open all
four switches.

To brake the motor, close S3 and S4
(or alternatively, close S1 and S2).

Decelerates rapidly

H-Bridge (application to DC motor control)

To run the motor in one direction,
say clockwise, close S1 and S4.

To run the motor in the other
direction, say counterclockwise,
close S2 and S3.

To allow the motor to coast, open all
four switches.

To brake the motor, close S3 and S4
(or alternatively, close S1 and S2).

H-Bridge (application to DC motor control)

7

8

EGR 304 Friday, 2/14/2020

5

To prevent a short, combinational logic
(NOT SOFTWARE) is commonplace.

Inputs Outputs Result
Dir Brake PWM S1 S2 S3 S4
0 0 0 open open open open Coast
0 0 1 close open open close Fwd
0 1 0 open open open open Coast
0 1 1 open open close close Brake

1 0 0 open open open open Coast
1 0 1 open close close open Rev
1 1 0 open open open open Coast
1 1 1 open open close close Brake

Microcontroller produces Dir, Brake, PWM
No matter what it produces the H-bridge
cannot short out the power supply.

H-bridge
controller

(Combinational
logic in

hardware.)

S1

S2

S3

S4

DIR

Brake

PWM

Fr
om

 m
ic

ro
co

nt
ro

lle
r

Never drive H-bridge switches directly from a microcontroller.
Physical destruction, maybe even fire,
is assured due to software bugs and crashes.

H-Bridge (application to DC motor control)

9

10

EGR 304 Friday, 2/14/2020

6

11

12

EGR 304 Friday, 2/14/2020

7

V-scan encoding—for an absolute position sensor.

13

14

EGR 304 Friday, 2/14/2020

8

U-scan encoding—Same as V-scan except at some point the sensor spacing stops increasing.

Doorbell. . .
Better go answer it.

Ahh. . .
Delivery guy is bringing slides about
Interrupt Driven I/O!

(Here we leave most of the hobby-oriented Web pages behind.)

https://www.explainthatstuff.com/how-electric-doorbells-work.html

15

16

https://www.explainthatstuff.com/how-electric-doorbells-work.html

EGR 304 Friday, 2/14/2020

9

Words from the Arduino Forum:

How can the port be controlled? How is I/O accomplished with this hardware?

It is a two-step process
1.) Setup: place bits in various control registers to establish . . .
--direction of I/O, input or output
--if input, and no connection to it, default high (enable pull up resistor), or default low (if available), or random
--if output, what is the initial output before the first write after power-up?, 1, 0 or X

2.) Do the actual I/0. There are various strategies
a.) Blind-cycle: Just do it immediately as the code runs. Not in coordination with the I/O device.

(Ready or not, hear I come!)

b.) Busy-waiting (aka gadfly I/O): Use a status bit to check the I/O device before reading or writing
to it. Result: while I/O device is busy, CPU needs to wait and monitor, hence the name.

(The CPU is analogous to kids in the back seat, “Are we there yet? Are we there yet? Are we there yet?. . .”
The kids don’t do homework while waiting, they busy themselves only with the pestering question.)

c.) Periodic polling: Similar to Busy-waiting, but CPU may work on other threads of code while
waiting on a busy I/O device. (Requires a timer interrupt—i.e requires additional hardware.)

(The kids do homework while waiting. Every five minutes a bell rings and they ask the question.)

d.) Interrupt driven: The I/O device has a method in hardware to request I/O service.
(The kids stick to their homework until told that they have arrived at their destination.)

e.) Direct Memory Access: The I/O device takes over the CPU bus and writes directly into memory
without CPU supervision. (The kids are not in the car!)

Gadfly: an annoying person (among other meanings)

SUMMARY SLIDE

17

18

EGR 304 Friday, 2/14/2020

10

The agenda—understanding interrupt-driven I/O (and by extension, multitasking)

An example to give some context

Memory capabilities needed for subroutines (functions, procedures, interrupts, are types of subroutines)

Sources of interrupts including counter-timer systems

Advantages of using interrupt-driven I/O—so obvious this section is hardly needed.
--Alternatives to interrupt driven I/O are gadfly (uncontrolled—annoying) I/O or various polling techniques,

all of which waste processor cycles prodigiously.
--Interrupts are foundational to object-oriented programming
--Many embedded systems that use interrupts have very little other code to run!

Risks of interrupt-driven I/O
--density limit
--latency and resolution limits
--interval restrictions
--critical regions in code
--deadlock

The agenda—understanding interrupt-driven I/O (and by extension, multitasking)

An example to give some context

Memory capabilities needed for subroutines (functions, procedures, interrupts, are types of subroutines)

Sources of interrupts including counter-timer systems

Advantages of using interrupt-driven I/O—so obvious this section is hardly needed.
--Alternatives to interrupt driven I/O are gadfly (uncontrolled—annoying) I/O or various polling techniques,

all of which waste processor cycles prodigiously.
--Interrupts are foundational to object-oriented programming
--Many embedded systems that use interrupts have very little other code to run!

Risks of interrupt-driven I/O
--density limit
--latency and resolution limits
--interval restrictions
--critical regions in code
--deadlock

19

20

EGR 304 Friday, 2/14/2020

11

An example of interrupt-driven I/O to give us some context

Goal: Use the 60 Hz powerline frequency as a time-reference for measuring time intervals.
(Could be extended to keeping real-time if ways to initially set the date and time-of-day are provided.)

A transformer will be used to step the mains voltage down to a convenient level. (About 9 V peak)

A wave-shaping circuit will be used to convert the sinusoidal shape (±9 V) to a TTL-level square wave (0 V to 5 V).

The square-wave signal will be connected to a digital I/O pin of the Arduino Uno.

The Arduino Uno will used to count the cycles of the mains power. Every 60 counts represents 1 second.

The above will be accomplished in the background so that a program operating in the loop() section of the code
can reference the relative time. (Relative time is the time since the Arduino Uno user program was loaded, reset, or
since the relative time register rolled over.)

An example of interrupt-driven I/O

Goal: Use the 60 Hz powerline frequency as a time-reference for measuring time intervals.
(Could be extended to keeping real-time if ways to initially set the date and time-of-day are provided.)

Arduino +5 V pin

(ݐ)ଶݒ

(ݐ)ଶݒ (V)

 ݐ
(ܿ݁ݏ)

(ݐ)ଵݒ (V)ݒ(ݐ) (V)

(ݐ)ݒ (ݐ)ଵݒ

http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItOWNvcygyKnBpKjYwKih4KzAuMDAzNykpIiwiY29sb3IiOiIjQ0MwMjAyIn0seyJ0eXBlIjoxMDAwLCJ3aW5kb3ciOlsiLTAuMDAxIiwiMC4wNTEiLCItMTAuMSIsIjEwIl19XQ--
http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJtYXgoLTAuNyxtaW4oNC44LCgxMDAwLzEzMzApKigtOWNvcygyKnBpKjYwKih4KzAuMDAzNykpLTAuNykpKSIsImNvbG9yIjoiIzAwOEYyRCJ9LHsidHlwZSI6MCwiZXEiOiItOWNvcygyKnBpKjYwKih4KzAuMDAzNykpIiwiY29sb3IiOiIjRjdENEQ0In0seyJ0e

XBlIjoxMDAwLCJ3aW5kb3ciOlsiLTAuMDAxIiwiMC4wNTEiLCItMTAuMSIsIjEwIl19XQ--
http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJtaW4oNC45LG1heCgwLjEsKC0xMDAwY29zKDEyMHBpKih4LTAuMDA0NykpKzIzMCkpKSIsImNvbG9yIjoiIzAwODVDMiJ9LHsidHlwZSI6MCwiZXEiOiJtYXgoLTAuNyxtaW4oNC44LCgxMDAwLzEzMzApKigtOWNvcygyKnBpKjYwKih4KzAuMDAzNykpL

TAuNykpKSIsImNvbG9yIjoiI0I4RjBDMSJ9LHsidHlwZSI6MCwiZXEiOiIxLjUiLCJjb2xvciI6IiNFQTc5RkMifSx7InR5cGUiOjAsImVxIjoiMC45IiwiY29sb3IiOiIjRjc5RDE2In0seyJ0eXBlIjoxMDAwLCJ3aW5kb3ciOlsiLTAuMDAxIiwiMC4wNTEiLCItMTAuMSIsIjEwIl19XQ--

6.3 VRMS

21

22

http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItOWNvcygyKnBpKjYwKih4KzAuMDAzNykpIiwiY29sb3IiOiIjQ0MwMjAyIn0seyJ0eXBlIjoxMDAwLCJ3aW5kb3ciOlsiLTAuMDAxIiwiMC4wNTEiLCItMTAuMSIsIjEwIl19XQ--
http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJtYXgoLTAuNyxtaW4oNC44LCgxMDAwLzEzMzApKigtOWNvcygyKnBpKjYwKih4KzAuMDAzNykpLTAuNykpKSIsImNvbG9yIjoiIzAwOEYyRCJ9LHsidHlwZSI6MCwiZXEiOiItOWNvcygyKnBpKjYwKih4KzAuMDAzNykpIiwiY29sb3IiOiIjRjdENEQ0In0seyJ0e
http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJtaW4oNC45LG1heCgwLjEsKC0xMDAwY29zKDEyMHBpKih4LTAuMDA0NykpKzIzMCkpKSIsImNvbG9yIjoiIzAwODVDMiJ9LHsidHlwZSI6MCwiZXEiOiJtYXgoLTAuNyxtaW4oNC44LCgxMDAwLzEzMzApKigtOWNvcygyKnBpKjYwKih4KzAuMDAzNykpL

EGR 304 Friday, 2/14/2020

12

Arduino +5 V pin

Arduino +5 V pin

23

24

